Abstract

In this paper the theoretical aspects and feature extraction capabilities of continuous wavelet transform (CWT) and discrete wavelet transform (DWT) are experimentally verified from the point of view of fault diagnosis of induction motors. Vertical frame vibration signal is analyzed to develop a wavelet based multi-class fault detection scheme. The redundant and high dimensionality information of CWT makes it computationally in-efficient. Using greedy-search feature selection technique (Greedy-CWT) the redundancy is eliminated to a great extent and found much superior to the widely used DWT technique, even in presence of high level of noise. The results are verified using MLP, SVM, RBF classifiers. The feature selection technique has enabled determination of the most relevant CWT scales and corresponding coefficients. Thus, the inherent limitations of CWT like proper selection of scales and redundant information are eliminated. In the present investigation ‘db8’ is found as the best mother wavelet, due to its long period and higher number of vanishing moments, for detection of motor faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.