Abstract
In this paper, a novel LDA-based dimensionality reduction method called fractional-order embedding direct LDA (FEDLDA) is proposed. More specifically, we redefine the fractional-order between-class and within-class scatter matrices which can significantly reduce the deviation of sample covariance matrices caused by the noise disturbance and limited number of training samples; then the novel feature extraction criterion based on the direct LDA (DLDA) and the idea of fractional-order embedding is applied. Experiments on AT&T, Yale and AR face image databases are performed to test and evaluate the effectiveness of the proposed algorithms. Extensive experimental results show that FEDLDA outperforms DLDA and other closely related methods in terms of classification accuracy and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.