Abstract
This paper presents Genetic Algorithms and Simulated Annealing (GASA) based on feature extraction of speech signal and comparison with traditional Linear Predictive Coding (LPC) methods. The performance of each method is analyzed for ten speakers with independent text speaker verification database from Center for Spoken Language Understanding (CSLU) which was developed by Oregon Graduate Institute (OGI). The GASA algorithm is also analyzed with constant population size for different generation numbers, crossover and mutation probabilities. When compared with the Mean Squared Error (MSE) of the each speech signal for each method, all simulation results of the GASA algorithm are more effective than LPC methods.KeywordsParticle Swarm OptimizationMean Square ErrorSpeech SignalSpeech DataUnit CommitmentThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.