Abstract

Classification of different weather conditions provides a first step support for outdoor scene modeling, which is a core component in many different applications of outdoor video analysis and computer vision. Features derived from intrinsic properties of the visual effects of different weather conditions contribute to successful classification. In this paper, features representing both the autocorrelation of pixel-wise intensities over time and the max directional length of rain streaks or snowflakes are proposed. Based on the autocorrelation of each pixel’s intensities over time, two temporal features are used for coarse classification of weather conditions according to their visual effects. On the other hand, features are extracted for fine classification of video clips with rain and snow. The classification results on 249 video clips associated with different weather conditions indicate the effectiveness of the extracted features, by using C-SVM as the classifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.