Abstract

The feature extraction algorithms developed in part I of this series are applied to solve nonconvex mixed integer nonlinear programming problems which arise in the optimal scheduling of multipurpose chemical plants. A general formulation of the multipurpose plant scheduling problem is developed which considers the allocation of plant equipment and secondary, limited resources to recipe operations so as to satisfy given production requirements while minimizing cost. Results obtained with a test example involving 135 binary and 922 continuous variables show that the successive refinement strategy is effective in identifying dominant regions of the solution space. Furthermore it is shown that multiple moment based characterization methods are superior to the interval analysis method reported in the literature. Trials using a second, larger nonlinear test problem involving 356 binary and 2402 continuous variables demonstrate that the focused successive refinement strategy is more efficient than a constant resolution strategy which employs genetic algorithm constructions. Although the conventional genetic algorithm can be significantly improved by introducing a heuristic mutation strategy which increases the likelihood of constant feasibility, the successive refinement strategy remains dominant. These studies demonstrate that the feature extraction strategy employing successive refinements and relatively low order moment based region characterization methods, offers an effective approach to solving an important class of large scale MINLP problems with multiple local optima.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.