Abstract

We investigate semiparametric Feasible Generalized Least Squares using Support Vector Regression to estimate the conditional variance function. Monte Carlo results indicate the resulting estimator and an accompanying standard error correction offer substantially improved precision, nominal coverage rates, and shorter confidence intervals than Ordinary Least Squares with heteroskedasticity-consistent standard errors. Reductions in root mean squared error can be over 90% of those achievable when the form of heteroskedasticity is known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.