Abstract

BackgroundGossypol found in cottonseeds is toxic to human beings and monogastric animals and is a primary parameter for the integrated utilization of cottonseed products. It is usually determined by the techniques relied on complex pretreatment procedures and the samples after determination cannot be used in the breeding program, so it is of great importance to predict the gossypol content in cottonseeds rapidly and nondestructively to substitute the traditional analytical method.ResultsGossypol content in cottonseeds was investigated by near-infrared spectroscopy (NIRS) and high-performance liquid chromatography (HPLC). Partial least squares regression, combined with spectral pretreatment methods including Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, and first derivate were tested for optimizing the calibration models. NIRS technique was efficient in predicting gossypol content in intact cottonseeds, as revealed by the root-mean-square error of cross-validation (RMSECV), root-mean-square error of prediction (RMSEP), coefficient for determination of prediction (Rp2), and residual predictive deviation (RPD) values for all models, being 0.05∼0.07, 0.04∼0.06, 0.82∼0.92, and 2.3∼3.4, respectively. The optimized model pretreated by Savitzky-Golay smoothing + standard normal variate + first derivate resulted in a good determination of gossypol content in intact cottonseeds.ConclusionsNear-infrared spectroscopy coupled with different spectral pretreatments and partial least squares (PLS) regression has exhibited the feasibility in predicting gossypol content in intact cottonseeds, rapidly and nondestructively. It could be used as an alternative method to substitute for traditional one to determine the gossypol content in intact cottonseeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.