Abstract

Proton dose coverage is sensitive to proton beam range. The current practice of CT number-based registration for patient positioning focuses on matching the target and is not sufficient for proton therapy because the proton range depends on the medium traversed by the beam. Patient body deformations and anatomical changes result in range deviation in the target. We propose proton range-based registration to minimize the range deviation. The range was calculated from cone beam-computed tomography (CBCT) of the patient on couch, and the range deviation was the difference of the calculated range from that on the initial (day 1) CBCT. In the investigated prostate cases in which the main cause of range deviation was the rotation of femur bones, and in the investigated abdomen cases in which the main cause of range deviation was body growth and anatomic change, our range-based registration was used to obtain the optimal beam angle by minimizing the range deviation. The new angle was limited to be ±5° from that planned to prevent potentially increased dose to the organs at risk. To demonstrate the benefit of range-based registration, we investigated the range at the voxels on the surface of the target volume. The calculation error of range deviation due to CBCT scatter was investigated by using solid water phantoms with different thicknesses. Range-based registration using both CBCTs and CTs was performed in cases of two patients with pelvic rhabdomyosarcoma and one patient with upper abdominal tumor. The range was represented by the water-equivalent thickness to shorten the computation for online application purposes. In the phantom study, the calculation error of range deviation due to CBCT scatter was within 2 mm for a 1-cm thickness change (the mean range deviation was 0.8 mm). In the CT study of the prostate cases, the range deviation (mean ± root-mean-square deviation) on the contour in each slice was efficiently reduced from 3.6 ± 2.8 mm to 2.1 ± 1.4 mm, with most slices being within 3 mm; in the CT study of the abdomen cases, the range deviation of the whole set was reduced from 4.4 ± 1.9 mm to 3.5 ± 2.1 mm. Both the mean and root-mean-square deviation of the range deviation on each treatment day were decreased. The dose coverage on the target was improved and the dose on the OARs was only slightly changed. Range-based registration can efficiently mitigate range deviation due to patient positioning and anatomical changes. It can shorten patient positioning time and reduce the patient's dose from CBCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.