Abstract

Brittleness problem imposes a severe restriction on the potential application of tungsten as high-temperature structural material. In this paper, a novel toughening method for tungsten is proposed based on reinforcement by tungsten wires. The underlying toughening mechanism is analogous to that of fiber-reinforced ceramic matrix composites. Strain energy is dissipated by debonding and frictional sliding at engineered fiber/matrix interfaces. To achieve maximum composite toughness fracture mechanical properties have to be optimized by interface coating. In this work, we evaluated six kinds of ZrO x -based interface coatings. Interfacial parameters such as shear strength and fracture energy were determined by means of fiber push-out tests. The parameter values of the six coatings were comparable to each other and satisfied the criterion for crack deflection. Microscopic analysis showed that debonding occurred mostly between the W filament and the ZrO x coating. Feasibility of interfacial crack deflection was also demonstrated by a three-point bending test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.