Abstract
BackgroundThe growing awareness for the high prevalence of obstructive sleep apnea (OSA) coupled with the dramatic proportion of undiagnosed individuals motivates the elaboration of a simple but accurate screening test. This study assesses, for the first time, the performance of oximetry combined with demographic information as a screening tool for identifying OSA in a representative (i.e. non-referred) population sample. MethodsA polysomnography (PSG) clinical database of 887 individuals from a representative population sample of São Paulo's city (Brazil) was used. Using features derived from the oxygen saturation signal during sleep periods and demographic information, a logistic regression model (termed OxyDOSA) was trained to distinguish between non-OSA and OSA individuals (mild, moderate, and severe). The OxyDOSA model performance was assessed against the PSG-based diagnosis of OSA (AASM 2017) and compared to the NoSAS and STOP-BANG questionnaires. FindingsThe OxyDOSA model had mean AUROC = 0.94 ± 0.02, Se = 0.87 ± 0.04 and Sp = 0.85 ± 0.03. In particular, it did not miss any of the 75 severe OSA individuals. In comparison, the NoSAS questionnaire had AUROC = 0.83 ± 0.03, and missed 23/75 severe OSA individuals. The STOP-BANG had AUROC = 0.77 ± 0.04 and missed 14/75 severe OSA individuals. InterpretationWe provide strong evidence on a representative population sample that oximetry biomarkers combined with few demographic information, the OxyDOSA model, is an effective screening tool for OSA. Our results suggest that sleep questionnaires should be used with caution for OSA screening as they fail to identify many moderate and even some severe cases. The OxyDOSA model will need to be further validated on data recorded using overnight portable oximetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.