Abstract
Abstract The production of methyl decanoate (MeDC) through esterification of decanoic acid (DeC) with methanol by reactive distillation is operationally challenging and energy-intensive due to the complicated behaviour of the reaction system and the difficulty of retaining the reactants together in the reaction region. Methanol being the lightest component in the mixture can separate itself from the reactant DeC as the distillation proceeds which will cause a massive reduction in the conversion of DeC utilizing either a batch or continuous distillation process. Aiming to overcome this type of the potential problem, novel integrated divided-wall batch reactive distillation configuration (i-DWBD) with recycling from the distillate tank is established in this study and is examined in detail. This study has clearly demonstrated that the integrated divided-wall batch reactive distillation column (i-DWBD) is superior to the traditional conventional batch distillation (CBD) and both the divided-wall (DWBD), and split reflux divided-wall (sr-DWBD) batch reactive distillation configurations in terms of maximum achievable purity of MeDC and higher conversion of DeC into MeDC. In addition, significant batch time and energy savings are possible when the i-DWBD is operated in multi-reflux mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.