Abstract

BackgroundIn the field of mobile health, portable dynamic electrocardiogram (ECG) monitoring devices often have a limited number of lead electrodes due to considerations, such as portability and battery life. This situation leads to a contradiction between the demand for standard 12‑lead ECG information and the limited number of leads collected by portable devices. MethodsThis study introduces a composite ECG vector reconstruction network architecture based on convolutional neural network (CNN) combined with recurrent neural network by using leads I, II, and V2. This network is designed to reconstruct three‑lead ECG signals into 12‑lead ECG signals. A 1D CNN abstracts and extracts features from the spatial domain of the ECG signals, and a bidirectional long short-term memory network analyzes the temporal trends in the signals. Then, the ECG signals are inputted into the model in a multilead, single-channel manner. ResultsUnder inter-patient conditions, the mean reconstructed Root mean squared error (RMSE) for precordial leads V1, V3, V4, V5, and V6 were 28.7, 17.3, 24.2, 36.5, and 25.5 μV, respectively. The mean overall RMSE and reconstructed Correlation coefficient (CC) were 26.44 μV and 0.9562, respectively. ConclusionThis paper presents a solution and innovative approach for recovering 12‑lead ECG information when only three‑lead information is available. After supplementing with comprehensive leads, we can analyze the cardiac health status more comprehensively across 12 dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.