Abstract

The present study aims to deduce the confinement effect on the magnetic properties of iron carbide (Fe3C) nanorods filled inside carbon nanotubes (CNTs), and to document any structural phase transitions that can be induced by compressive/tensile stress generated within the nanorod. Enhancement in the magnetic properties of the nanorods is attributed to tensile stress as well as to compression, present in the radial direction and along the nanotube axis, respectively. Finally, the growth of permanent cylindrical nanomagnets has been optimized by applying a field gradient. Besides presenting the growth model of in situ filling, we have also proposed the mechanism of magnetization of the nanotubes. Magnetization along the tube axis has been probed by confirming the pole formation. Fe3C has been selected because of its ease of formation, low TC and incompressibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.