Abstract

Hematite is a promising photocatalyst for solar water splitting while its performance has been severely limited by various factors. Recently surface Fe2TiO5 layer was widely reported to enhance the performance of hematite with a favorable band position to facilitate hole transport. Here we further show that the Fe2TiO5-incorporation in bulk hematite can also improve the performance with faster charge separation. Moreover, it can be well coupled with surface P-modification to simultaneously improve charge separation and hole transfer with a synergetic effect. The Ti and P co-modified hematite shows a significantly enhanced photocurrent of 2.37mA/cm2 at 1.23V vs. RHE when compared to the pristine value of 0.85mA/cm2. After coupling with Co-Pi catalysts, the hematite sample can even achieve a stable, high photocurrent of 2.90mA/cm2 at 1.23V vs. RHE. The design of Ti and P co-modified hematite hollow nanostructures can be used as a promising candidate for solar water splitting applications. The discrete Fe2TiO5-incorporation also provides a good insight on the mechanism to understand other Ti-based treatments of hematite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.