Abstract

A magnetic FeCo2O4/Co3O4 nanocomposite was successfully synthesized by a facile hydrothermal method as an efficient activator for persulfate (PS) activation to degrade tetracycline (TC) in an aqueous solution. TC removal and mineralization efficiencies reached up to 91.63% and 43.57% in 120 min in the FCC-3/PS system, respectively. The mixed-valence of Fe/Co in the nanocomposite catalyst was beneficial for electrons transfer between Co and Fe elements and enhanced the redox circulation of Fe and Co in between divalent and trivalent. Surficial analysis and phosphate adsorption test confirmed the existence of –OH groups on the surfaces of FeCo2O4/Co3O4 nanocomposite. Fe/Co redox and surficial hydroxyl in the catalyst played significant roles in the TC potentiation degradation, which was contributed by the plenty of adsorbed –OH groups and excellent dispersity of FeCo2O4 in the FeCo2O4/Co3O4 composite. The sulfate radicals were major species followed by the hydroxyl radicals, and the surficial adsorbed hydroxyl made great contributions to radical generation. The cycling test and intermediate toxicity analysis indicated that the nanocomposite was considered stable and practicable in water treatment. This work demonstrated that the FeCo2O4/Co3O4 nanocomposite was an effective and environ-friendly catalyst towards PS activation for removing organic pollutants from water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.