Abstract
In this paper, we study $f-$biharmonic curves as the critical points of the $f-$bienergy functional $E_{2}(\psi )=\int_{M}f\mid \tau (\psi )^{2}\mid \vartheta _{g}$, on a Lorentzian para-Sasakian manifold $M$. We give necessary and sufficient conditions for a curve such that has a timelike principal normal vector on lying a $4$-dimensional conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-Sasakian manifold to be an $f-$biharmonic curve. Moreover, we introduce proper $f-$biharmonic curves on the Lorentzian sphere $S_{1}^{4}.$
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Facta Universitatis, Series: Mathematics and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.