Abstract

In this paper, we explore the use of a pseudo-random graph family, Borel Cayley graph family, as the network topology in an NGN (Next Generation Network) with thousands of nodes operated in a packet switching environment asynchronously. BCGs are known to be an efficient topology in interconnection networks because of its small diameters, short average path lengths, and low-degree connections. However, the application of BCGs in NGN are hindered by a lack of size flexibility and fault tolerant routing. We propose a fault-tolerant routing algorithm for BCGs. Our algorithm exploits the vertex-transitivity property of Borel Cayley graphs and relies on extra information to reflect topology change. Our results show that the proposed method supports good reachability and short average hop count.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.