Abstract
Identification and control of nonlinear systems depend on the availability and quality of sensor measurements. Measurements can be corrupted or interrupted due to sensor failure, broken or bad connections, bad communication, or malfunction of some hardware or software (referred to as missing sensor measurements in this paper). This paper proposes a novel fault-tolerant indirect adaptive neurocontroller (FTIANC) for controlling a static synchronous series compensator (SSSC), which is connected to a power network. The FTIANC consists of a sensor evaluation and (missing sensor) restoration scheme (SERS), a radial basis function neuroidentifier (RBFNI), and a radial basis function neurocontroller (RBFNC). The SERS provides a set of fault-tolerant measurements to the RBFNI and RBFNC. The resulting FTIANC is able to provide fault-tolerant effective control to the SSSC when some crucial time-varying sensor measurements are not available. Simulation studies are carried out on a single machine infinite bus (SMIB) as well as on the IEEE 10-machine 39-bus power system, for the SSSC equipped with conventional PI controllers (CONVC) and the FTIANC without any missing sensors, as well as for the FTIANC with multiple missing sensors. Results show that the transient performances of the proposed FTIANC with and without missing sensors are both superior to the CONVC used by the SSSC (without any missing sensors) over a wide range of system operating conditions. The proposed fault-tolerant control is readily applicable to other plant models in power systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.