Abstract

The paper focuses on a methodological study oriented towards the development of diagnostic tools for on-field operating solid oxide fuel cell (SOFC) systems. This work is motivated by the increasing demand for diagnostic techniques aimed at both increasing durability and fully exploiting SOFC benefits throughout system lifetime. Nowadays many SOFC diagnostic applications are available in lab-controlled environment, but few studies are proposed for on-field use. Main contribution of this work is thus the development of suited methodologies for detection and isolation of typical SOFC system faults. Fault tree analysis (FTA) is proposed as a tool for the isolation process. For each specific component, the most significant faults are correlated, via a top-down approach, to the corresponding symptom(s). The knowledge gained through the FTA is exploited to understand the mutual interactions among all devices within the entire SOFC system. Such an approach resulted in the definition of a fault signature matrix that conveniently links system-level symptoms to specific component faults. Such an approach is therefore suitable to perform fault detection and isolation (FDI) of an SOFC system as a whole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.