Abstract

The concept of More-Electric Aircraft (MEA) has the potential to improve the environmental, economic, and reliability performance in the energy and transportation sectors. To achieve this potential, it has become a tendency to develop complex architectures of Electrical Power Systems (EPSs) for MEA to supply increasing electrical power demands. Moreover, a reliable and intelligent Energy Management System (EMS) is critical to coordinate the various EPS subsystems to ensure safe and efficient flight, following the real-time EPS operating requirements and safety criteria, while reducing the operating costs for all flight stages. This paper presents a fault-tolerant hierarchical EMS, for an innovative multi-converter-based aircraft EPS, to configure the system, ensure power distribution, and manage energy storage in multiple faulty scenarios over different time scales. There are two levels in this EMS: The High Level (HL) is based on Model Predictive Control (MPC), formulated by Mixed-Integer-Linear-Programming (MILP), to optimise the long-term EPS performance while considering future predictions; The Low Level (LL) adopts deterministic rules to cope with load changes and fault occurrences over the short term, during the HL sample intervals, with a faster clock. In particular, the LL controller contains four modes: to either cooperate with the HL online MPC or to operate independently, in either EPS normal or faulty conditions. The proposed EMS is evaluated in two cases, firstly considering load deviations in a normal operating scenario, and then considering behaviour in fault scenarios. The results indicate that the proposed EMS successfully reduces the EPS operational costs while ensuring quick responses to dynamic changes with either EPS component faults or EMS internal faults.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.