Abstract

This paper presents the development of fault-tolerant controller and their application for multirotor unmanned aerial vehicles – specifically an octorotor – in challenging environments e.g. nuclear power plant inspection or other dull, dirty and dangerous applications. This paper considers a combination of sliding mode control robustness properties (to deal with actuator faults) and control allocation (to automatically redistribute the control signals to healthy actuators, especially in the event of actuator failures). The resultant controller has the ability to operate in both fault-free and fault/failure conditions without reconfiguring the main baseline controller. The proposed controller also has the ability to operate for up to six rotor failures which represent an under-actuation condition i.e., a case when only two rotors are available. The under-actuation scenarios are conditions when most FTC schemes are not able to operate due to the lack of redundancy. The simulation results conducted on the nonlinear model with wind/gusts and sensor noise, show a good tracking performance under various fault-free and fault/failure scenarios (over-actuation, sufficient actuation and under-actuation conditions).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.