Abstract
A fault-tolerant control approach without rate sensors is presented for the attitude stabilization of a satellite being developed. External disturbances, reaction wheel faults, actuator saturation, and unavailable angular velocity are addressed. A sliding-mode observer is proposed by using attitude feedback only, and the unavailable angular velocity is estimated by this observer in finite time. Using the attitude and the estimated velocity, another sliding-mode observer is proposed to reconstruct actuator faults and disturbances. It is proven that reconstruction with zero observer error is achieved in finite time. With the reconstructed value, a velocity-free controller is then developed to asymptotically stabilize the attitude. Simulation results are also provided to verify the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.