Abstract
The coupled relationship between inputs and outputs in multiple-input multiple-output (MIMO) systems, as well as the multiplicative uncertainties caused by multiplicative faults, increases the complexity of fault diagnosis (FD) and fault-tolerant control (FTC). Research has indicated that coprime factor uncertainties are suitable for modeling multiplicative uncertainties. This paper presents an FD and FTC strategy for MIMO systems based on the ν-gap metric technique within the coprime factorization framework. In the offline phase, the ν-gap metric-based hierarchical clustering method is designed to classify fault samples. Next, core systems and boundary systems are calculated for each fault category, and corresponding residual compensation controllers are designed. In the online phase, by computing the relevant ν-gap metric values, the fault severity of the real-time system is determined, and the core system with similar dynamic behaviors is identified. This FD result drives the switching of residual compensation controller, achieving FTC and ensuring system stability and robustness. This strategy eliminates the need for online solving of fault-tolerant controller, saving computational resources. Finally, the ν-gap metric-based FD and FTC strategy is validated with simulations on a three-phase voltage source inverter system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.