Abstract

Abstract The effectiveness of fault diagnosis in assembly is contingent on the effectiveness of the sensor measurement of assembled parts. Using a diagnosability enhancement methodology for a single fixture, a means to achieve an optimal sensor configuration for a multi-fixture assembly of sheet metal parts is proposed. A Hierarchical Group description of the assembly is used to build a State-Transition representation which, with fixture CAD information, is used in multi-level hierarchical optimization to arrive at the optima. A defined Coverage Effectiveness Index quantifies fault isolation performance. The index also serves to evaluate the performance effectiveness of the measurement station location and change in the sensor number. The approach has significant utility in automotive body assembly where system complexity makes the choice of sensor location vital to fault isolation performance. Examples using multi-fixture simulated automotive body assembly sequences are provided to illustrate the methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.