Abstract

The paper shows how a fault detection algorithm based on stochastic automata as qualitative model can be improved by non-negative CP tensor decomposition to make it applicable to large discrete-time systems. Because exponential growth of the number of transitions of the automaton with a rising number of states, inputs and outputs of the system can usually not be avoided, tensor decomposition methods enable the reduction of the amount of data to be stored by an order of magnitude. In order to exploit the full potential of the decomposition, a fault detection algorithm that is applicable to the decomposed tensor structure is defined. An example based on real measurement data shows the functionality of the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.