Abstract

Abstract Techniques that biochemically trace foraging habits of predators rely on the assumption that intra‐specific variation in prey species is smaller than variation among them. At the same time, these techniques often show that diets can induce drastic changes in the biochemical profiles of prey species, especially across different ecosystems. We tested if intra‐specific variation in fatty acid profiles of prey species added enough noise to confound quantitative fatty acid signature analysis (QFASA) using a controlled feeding experiment. Steelhead trout (Oncorhynchus mykiss) were fed either alewife (Alosa pseudoharengus) or round goby (Neogobius melanostomus) from either Lake Ontario or Cayuga Lake for a period of 8 weeks. Fatty acid profiles were significantly different between prey species and between lake of origin within each species. Differences in fatty acid profiles of steelhead trout strongly reflected prey species differences, whereas differences related to prey origin (lakes) were noted at a much lesser extent. QFASA performed remarkably well given the differences observed between the lakes prey originated from. Our results indicate that QFASA models for steelhead trout are probably not specific to one lake, and could provide estimates for other freshwater systems where alewife and round goby serve as the primary forage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.