Abstract

Ageing structures and metallic bridges, in particular, are vulnerable to fatigue failure due to having sensitive fatigue details. The literature on upgrading these structures highlights the efficiency of tensile (mode I) fatigue strengthening using carbon fibre reinforced polymer (CFRP) composites. However, cracks or defects are often oriented to the loading angle, which develops mixed-mode (I+II) conditions that govern crack propagation. Therefore, the efficacy of mode-I fatigue strengthening needs to be evaluated under such conditions and at different stages of the fatigue service life. This paper extends the current understanding of fatigue strengthening with CFRP from mode I loading to the case of mixed-mode (I+II) with different initial damage level. CFRP-strengthened steel plates were produced with six loading angles between 90° and 10° and two damage levels. Test results revealed that the mixed-mode crack propagation curves of steel plates strengthened at different stages of their fatigue life were approximated by the same crack growth curve in pure tensile mode by utilizing the shifting concept. Mixed mode modification factor was derived from test results of 36 specimens to predict the fatigue life of CFRP-strengthened steel plates initially inclined cracked with various degrees of damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.