Abstract

This paper proposes a numerical framework to predict fatigue life on welded joints by integrating several computational techniques. The framework consists of five steps: i) materials properties estimation; ii) welding simulation using thermo-mechanical finite element method; iii) macroscopic stress field analysis under cyclic loading; iv) mesoscopic stress field analysis using crystal plasticity finite element method (CPFEM); v) analysis of fatigue crack growth. The total number of cycles to failure is eventually obtained by the sum of initiation life calculated by CPFEM and propagation life calculated by X-FEM. A fatigue life of butt joint is evaluated by the proposed method. The results demonstrated the possibility of evaluating the fatigue life and its scattering by the proposed framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.