Abstract

ABSTRACTTo investigate the multiaxial fatigue properties of vulcanized natural rubber (NR), a series of tests including both proportional and non‐proportional loading paths on small specimens were performed. The existing fatigue life prediction approaches are evaluated with life data obtained in the tests. It is shown that the equivalent strain approach presents a good prediction of the fatigue life although it has a certain shortcoming. Compared with the strain energy density (SED) model, the cracking energy density (CED) model represents the portion of SED that is available to be released by virtue of crack growth on a given material plane, so it gives better results in the life prediction. Some of the approaches based on critical plane which are widely used for metal fatigue are also tested in this paper, and the results show that the Chen‐Xu‐Huang (CXH) model gives a better prediction, compared with the Smith‐Watson‐Topper (SWT) and Wang–Brown (WB) model. A modified Fatemi–Socie's model has also been introduced, and the results show that the modified model can be used to predict the fatigue life of rubber material well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.