Abstract
The fatigue growth of multiple cracks, of arbitrary lengths, emanating from a row of fastener holes in a bonded, riveted, lap joint in a pressurized aircraft fuselage is studied. The effects of residual stresses due to a rivet misfit, and of plastic deformation near the hole, are included. A Schwartz-Neumann alternating method which uses the analytical solution for a row of multiple colinear cracks in an infinite sheet (the crack-faces being subject to arbitrary tractions), is developed to analyze this MSD problem on a personal computer. It is found that for a range of crack lengths, a phenomena wherein the shorter cracks may grow faster than longer cracks may exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.