Abstract
Straight cracks near a stiffening element, or curved cracks, in a pressurized shell can be subjected to out-of-plane tearing stresses in addition to normal tensile stresses due to the membrane stresses in the shell. To predict the rate of fatigue crack growth in such situations a theory and a crack growth rate correlation are needed. Such loadings are modelled as a superposition of plane stress tensile fracture (mode I) and Kirchhoff plate theory shearing fracture (mode 2). Finite element analyses using shell elements are used to compute the energy release rate and stress intensity factors associated with the loading. Three fatigue crack growth rate experiments were carried out on sheets of 2024-T3 aluminium alloy loaded in tension and torsion. The first set of experiments is constant amplitude fatigue crack growth tests. The second consists of experiments where crack closure is artificially eliminated to determine the rate of crack growth in the absence of crack face contact. The third is a set of constant stress intensity factor amplitude tests. The results all show that as the crack grows extensive crack face contact occurs, retarding crack growth. In the absence of crack face contact, however, the addition of out-of-plane shear loading increases the crack growth rate substantially.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue <html_ent glyph="@amp;" ascii="&amp;"/> Fracture of Engineering Materials and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.