Abstract

The effect of notch geometry on the propagation of fatigue cracks emanating from sharp V-shaped notches was investigated. To this purpose, an experimental campaign has been conducted on Al-7075–T651 specimens carrying notches with aperture angles of 45°, 90°, and 135°. In order to investigate the role of microstructure texture, specimens were extracted from the plates with the main axis either in the longitudinal rolling direction (L-samples) or in the transversal direction (T-samples), or 45° inclined with respect to both directions (LT-samples). The effect of stress amplitude was investigated by performing tests at two load levels. Three loading directions θ = 0°, 45° and 90° were considered. Some specimens experienced pure Mode I loading condition, whereas the remaining ones were subjected to combined Mode I and Mode II loading condition. The crack deflection induced by the variation in loading direction was determined by measuring the kinking angle. A linear elastic fracture mechanics approach was adopted for the analysis of experimental results. Stress intensity factors (SIF) of straight cracks were calculated using an appropriate weight function set up for studying inclined edge cracks emanating from sharp V-notches. On the contrary, a finite element model has been built up to derive the SIFs at the tip of the kinked cracks. The influence of K II on the crack propagation was discussed on the basis of theoretical and semi-empirical models. It has been found that (i) the crack initiation at the notch root occurred in mixed mode conditions, (ii) a decreasing Mode II component with growing crack length was observed under initial loading direction θ 0 = 45° and θ 0 = 90°, (iii) a crack deflection was observed after 45° rotation of the initial loading direction; a good prediction of the kinking angle was obtained using the maximum tangential stress criterion, and (iv) a fairly good rationalization of all the collected crack growth rate data is obtained if the driving force for crack propagation is expressed in terms of K I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.