Abstract

Fatigue is a major cause of failure in several industries, and in many practical cases, local mixed-mode conditions prevail at the crack front. The effect of plane mode mixity on the crack growth rate and crack growth direction has been investigated. Fatigue crack growth experiments have been conducted on aluminum alloy Al5083-H111 for several mode mixities. A fixture was manufactured in order to apply the different combinations of mode I and II by changing loading angle. Afterward, three-dimensional simulations have been implemented using the Zencrack software. Based on numerical simulations, new relations are proposed to estimate stress intensity factors for compact tension shear geometry by modifying Richard’s equations [1].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.