Abstract

AbstractA simple system was constructed and used in the experimental elucidation of the fate of a mutant emerging in a population. Three Escherichia coli strains having the same genetic background except for their glutamine synthetase gene were used as model competitors. The difference in the enzyme gene were introduced by random mutation. Competition between these bacterial strains was carried out and observed in a continuous liquid culture. In most cases, the competitors stably coexist either in a steady state or in an oscillating state. In addition, the competition between the strains was found to be a deterministic process and not a stochastic one. These results showed that an emerging mutant in a population, be it a closely related one to the original members, can attain a state of stable coexistence even in a homogeneous environment. The ability of each of the emerging mutants to maintain its stable coexistence with the original population gives rise to the accumulation of various mutants in a population. Therefore, evolution starts from gradual accumulation of various mutants in the population, which in turn leads to the diversification of the population. As our experimental system is a minimum model for the various competitions in the natural ecosystem, the observed competitive coexistence is proposed to be a general phenomenon in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.