Abstract

During oxidative treatment of iodide (I- )-containing waters, I- is easy to be oxidized into hypoiodous acid (HOI) by various oxidants and the further reaction of HOI with organic compounds can lead to the formation of iodinated disinfection by-products (I-DBPs). Oxidation of HOI to iodate (IO3 - ) or reduction of HOI to I- has been proposed to reduce the formation of I-DBPs. Because the reaction of HOI with sulfite proceeds rapidly, this study examined the fate of iodine and the formation of I-DBPs in Mn(VII)/sulfite process. Results showed that I- was oxidized to HOI but the further formation of IO3 - was suppressed due to the fast reduction of HOI to I- by sulfite. The reactions of HOI with SO3 2- and IO- with SO3 2- are the major pathways with species-specific second-order rate constants determined to be 1.12 × 105 M-1 s-1 and 9.43 × 107 M-1 s-1 , respectively. The rapid reaction of HOI with sulfite plays an essential role in minimizing the formation of iodinated products in HOI- and phenol-containing solutions. The toxic risk analysis showed that the toxicity of the generated DBPs from Mn(VII)/sulfite pre-oxidation followed by chlorination only changed slightly. PRACTITIONER POINTS: The decay of I- was negligible in Mn(VII)/sulfite process. The rapid reaction of HOI with SO3 2- resulted in the negligible generation of IO3 - . Mn(VII)/sulfite process exerted slight influence on the formation of I-DBPs. Mn(VII)/sulfite process is promising for the pretreatment of I- -containing water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.