Abstract

When SV40 infects mouse cells, it does not replicate but instead causes neoplastic transformation of a small percentage of the cells. It is unknown, however, what happens to the virus in those cells that do not become transformed. We introduced SV40 into mouse cells by nonselective means, either by cotransfection of SV40 DNA with a selectable marker or by random cloning of SV40-infected cells. We analyzed the fate of viral DNA sequences, expression of T antigens, and transformation properties of these cells. We found that, upon infection, viral DNA integration occurs at a frequency that is at least 10-fold higher than the frequency of transformation. The majority of these cells are not transformed due to lack of expression of T antigen. One cell line which expresses a truncated T antigen is not transformed. We have mapped the viral sequences in the genome of these cells and find that integration in the large T intron is probably responsible for the defect. Lack of transformation can therefore be attributed to both cellular and viral factors, namely, introduction of viral DNA into cells that are resistant to transformation or integration of viral DNA in such a way that T antigen expression is prohibited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.