Abstract

We demonstrate that continuous phase fat structuring affects the release of a model marker from the dispersed aqueous phase of water-in-oil (W/O) emulsions subjected to simulated gastrointestinal conditions. Model W/O emulsions consisting of a 20 wt% dispersed aqueous phase containing 1 mM methylene blue added as a marker were stabilized via either continuous phase core-shell stabilization, network stabilization or a combination thereof. The network-stabilized emulsion showed the lowest extent of marker release under gastric (<3% after 1 h) and duodenal conditions (~5% after 2 h). The independent contributions of dilution, osmotic gradient, pH and bile salts all affected emulsion stability and marker release, with bile salts showing the greatest contribution. The key finding of this study was that the presence of a fat crystal network provided greater resistance against marker release than core-shell emulsion stabilization during in vitro digestion. Overall, this study has shown that fat phase structuring is a key parameter to control W/O emulsion breakdown and marker release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.