Abstract

SummaryThis paper presents a robust adaptive impedance controller for robot manipulators using function approximation techniques (FAT). Recently, FAT-based robust impedance controllers have been presented using Fourier series expansion for uncertainty estimation. In fact, sinusoidal functions can approximate nonlinear functions with arbitrary small approximation error based on the orthogonal functions theorem. The novelty of this paper in comparison with previous related works is that the number of required regressor matrices in this paper has been reduced. This superiority becomes more dominant when the manipulator degrees of freedom (DOFs) are increased. First, the desired signals for motor currents are calculated, and then the desired voltages are obtained. In the proposed approach, only a simple model of the actuator and manipulator dynamics is used in the controller design and all the rest dynamics are treated as external disturbance. The external disturbances can then be approximated by Fourier series expansion. The adaptation laws for Fourier series coefficients are derived from a Lyapunov-based stability analysis. Simulation results on a 2-DOF planar robot manipulator including the actuator dynamics indicate the efficiency of proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.