Abstract

Near-Infrared (NIR) picosecond pulsed light shined in biological tissues (e.g. brain, breast, muscle) offers the opportunity for non-invasive quantitative spectroscopy and imaging. Tissue optical properties determine high attenuation levels of optical signals and nanosecond scale dynamics. Therefore high-performance set-ups are needed. We aimed at developing a winning photodetector-electronics pairing for a broad field of multiple-wavelengths faint-signal optical investigations, like brain functional imaging, optical mammography, in-vivo spectroscopy, drugs characterization, molecular imaging. We present an electronic instrumentation based on silicon Single-Photon Avalanche Diode (SPAD) and fast-gating frontend electronics, in a Time-Correlated Single-Photon Counting (TCSPC) set-up. Detection efficiency is very high (50% at 550 nm and 15% at 800 nm), allowing acquisition of very faint optical signals on a wide spectral range. Furthermore, the fast-gating circuitry enables the detector very quickly (500 ps) and for user-selectable (200 ps - 510 ns) durations, thus allowing the rejection of very intense optical signals (e.g. scattered light from more superficial layers of the tissue under investigation) preceding useful faint signals (e.g. scattered light from sub-cellular components or coming from deep tissue layers), which would be otherwise overwhelmed and made undetectable. We attain photon-counting dynamic ranges up to 107 with photon-timing resolutions of 95 ps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.