Abstract

We study the communication primitives of broadcasting (one-to-all communication) and gossiping (all-to-all communication) in known topology radio networks, i.e., where for each primitive the schedule of transmissions is precomputed based on full knowledge about the size and the topology of the network. We show that gossiping can be completed in $O(D+\frac{\varDelta\log n}{\log{\varDelta}-\log{\log n}})$time units in any radio network of size n, diameter D, and maximum degree Δ=Ω(log n). This is an almost optimal schedule in the sense that there exists a radio network topology, specifically a Δ-regular tree, in which the radio gossiping cannot be completed in less than $\varOmega(D+\frac{\varDelta\log n}{\log{\varDelta}})$units of time. Moreover, we show a $D+O(\frac{\log^{3}n}{\log{\log n}})$schedule for the broadcast task. Both our transmission schemes significantly improve upon the currently best known schedules by Gąsieniec, Peleg, and Xin (Proceedings of the 24th Annual ACM SIGACT-SIGOPS PODC, pp. 129–137, 2005), i.e., a O(D+Δlog n) time schedule for gossiping and a D+O(log 3 n) time schedule for broadcast. Our broadcasting schedule also improves, for large D, a very recent O(D+log 2 n) time broadcasting schedule by Kowalski and Pelc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.