Abstract
We present an algorithm that computes a (1+varepsilon)-approximation of the diameter of a weighted, undirected planar graph of n vertices with non-negative edge lengths in O(nlog n(log n + (1/varepsilon)^5)) expected time, improving upon the O(n((1/varepsilon)^4 log^4(n) + 2^{O(1/varepsilon)}))-time algorithm of Weimann and Yuster [ICALP 2013]. Our algorithm makes two improvements over that result: first and foremost, it replaces the exponential dependency on 1/varepsilon with a polynomial one, by adapting and specializing Cabello's recent abstract-Voronoi-diagram-based technique [SODA 2017] for approximation purposes; second, it shaves off two logarithmic factors by choosing a better sequence of error parameters during recursion. Moreover, using similar techniques, we improve the (1+varepsilon)-approximate distance oracle of Gu and Xu [ISAAC 2015] by first replacing the exponential dependency on 1/varepsilon on the preprocessing time and space with a polynomial one and second removing a logarithmic factor from the preprocessing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.