Abstract

Aerospace composite material components are currently joined using heavy titanium bolts. This joining method is not ideal when considering its weight, thermal expansion, electrical conductivity, and risk of unbalanced load distribution. We propose here an innovative fastening technology using thermoplastic composite rivets. A rivet blank is heated above its melting temperature using Joule heating and is formed directly in the composite laminates by an automated process. Carbon fiber and polyamide blanks were used with two fiber architecture: 2D braid and unidirectional. The braided architecture showed superior manufacturing performance and repeatability. Joints were riveted in less than 40 s per rivet. The temperature measured in the riveted composite laminate in the vicinity of formed rivet reached only 136℃ during riveting. Double fastener lap shear testing showed breaking load of 6146 N per fastener. This joint strength is higher than comparable aluminum-riveted joints, and the specific joint strength is higher than titanium-bolted joints. With these advantages, the technology could be developed and used in the next generations of lighter, cleaner, and safer aircraft.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.