Abstract
As an effective method for high-dimensional information processing, tensor factorization has been widely used in context-aware recommendation. However, the multi-dimensional processing of tensor factorization usually leads to more serious data sparsity. Making full use of the data in recommendation systems, including a small amount of explicit rating data and a large amount of implicit feedback data such as clicks, plays, and purchases, can effectively alleviate this problem. Meanwhile, the processing of sparse explicit data and huge implicit feedback data makes tensor factorization face a severe challenge of computational efficiency. Therefore, this study proposes a fast tensor factorization model named FWCP that unifies explicit and implicit feedback information, which mainly studies as follows: (1) Assigning non-uniform weights to observed and unobserved values to unify explicit and implicit feedback information; (2) Memorizing intermediate data which generated by element-wise alternating least squares(ALS), and implementing parallel optimization of FWCP, which can reduce the training time of tensor factorization based on whole-data. The evaluation results on two real datasets showed that FWCP proposed in this study is superior to other context-aware recommendation algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.