Abstract

Spatial distribution and dynamics of plasma-membrane proteins are thought to be modulated by lipid composition and by the underlying cytoskeleton, which forms transient barriers to diffusion. So far this idea was probed by single-particle tracking of membrane components in which gold particles or antibodies were used to individually monitor the molecules of interest. Unfortunately, the relatively large particles needed for single-particle tracking can in principle alter the very dynamics under study. Here, we use a method that makes it possible to investigate plasma-membrane proteins by means of small molecular labels, specifically single GFP constructs. First, fast imaging of the region of interest on the membrane is performed. For each time delay in the resulting stack of images the average spatial correlation function is calculated. We show that by fitting the series of correlation functions, the actual protein "diffusion law" can be obtained directly from imaging, in the form of a mean-square displacement vs. time-delay plot, with no need for interpretative models. This approach is tested with several simulated 2D diffusion conditions and in live Chinese hamster ovary cells with a GFP-tagged transmembrane transferrin receptor, a well-known benchmark of membrane-skeleton-dependent transiently confined diffusion. This approach does not require extraction of the individual trajectories and can be used also with dim and dense molecules. We argue that it represents a powerful tool for the determination of kinetic and thermodynamic parameters over very wide spatial and temporal scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.