Abstract

The trade-off between the electrochemical performance and mechanical strength is still a challenge for Ti3C2Tx free-standing electrode. Herein, a facile approach was proposed to fabricate a Microfibrillated cellulose@Ti3C2Tx (MFC@Ti3C2Tx) self-assembled microgel film by means of hydrogen bonding linkage. Benefiting from the rich hydroxyl groups on the MFC, the Ti3C2Tx nanosheets coated on the MFC in a time scale of minutes (within 1 min) instead of hours. The ultralong 1D frame of MFC effectively mitigated the re-aggregation of Ti3C2Tx nanosheet. The fluffy MFC@Ti3C2Tx film structure and the constructed 1D/2D conducting Ti3C2Tx pathways in horizontal and vertical directions endowed the fast ion transport of the electrolytes and the improved accessibility to the Ti3C2Tx surface. As a result, the freestanding MFC@Ti3C2Tx microgel film delivered a high specific capacitance of 451F/g. And the rate performance was increased to 71% from the 64% of that of pristine Ti3C2Tx film. Furthermore, the tensile strength of MFC@Ti3C2Tx film was also promoted to 46.3 MPa, 3 folds of that of the pristine Ti3C2Tx film, due to the high strength of MFC and the hydrogen bonding effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.