Abstract

Cellular automata (CA) with given evolution rules have been widely investigated, but the inverse problem of extracting CA rules from observed data is less studied. Current CA rule extraction approaches are both time consuming and inefficient when selecting neighborhoods. We give a novel approach to identifying CA rules from observed data and selecting CA neighborhoods based on the identified CA model. Our identification algorithm uses a model linear in its parameters and gives a unified framework for representing the identification problem for both deterministic and probabilistic CA. Parameters are estimated based on a minimum variance criterion. An incremental procedure is applied during CA identification to select an initial coarse neighborhood. Redundant cells in the neighborhood are then removed based on parameter estimates, and the neighborhood size is determined using the Bayesian information criterion. Experimental results show the effectiveness of our algorithm and that it outperforms other leading CA identification algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.