Abstract

Past research has demonstrated that a static, three-dimensional (3D) object scene can be directly recorded as a complex digital hologram. However, numerical reconstruction of the object scene, which may comprise multiple sections located at unknown distances from the hologram, is a complicated and computation-intensive process. To the best of our knowledge, we propose, for the first time, a low complexity method that is capable of reconstructing a complex hologram, such that sections at different depths in the 3D object scene can be automatically reconstructed at the correct focal distances and merged into a single image for an extended depth of field. We demonstrate an order of magnitude increase of the depth of field for binary objects. With the use of a graphical processing unit, the reconstruction of a 512×512 complex hologram can be accomplished in about 100 ms, equivalent to around 10 frames per second.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.