Abstract

Capability Hardware Enhanced RISC Instructions (CHERI) supplement the conventional memory management unit (MMU) with instruction-set architecture (ISA) extensions that implement a capability system model in the address space. CHERI can also underpin a hardware-software object-capability model for scalable application compartmentalization that can mitigate broader classes of attack. This article describes ISA additions to CHERI that support fast protection-domain switching, not only in terms of low cycle count, but also efficient memory sharing with mutual distrust. The authors propose ISA support for sealed capabilities, hardware-assisted checking during protection-domain switching, a lightweight capability flow-control model, and fast register clearing, while retaining the flexibility of a software-defined protection-domain transition model. They validate this approach through a full-system experimental design, including ISA extensions, a field-programmable gate array prototype (implemented in Bluespec SystemVerilog), and a software stack including an OS (based on FreeBSD), compiler (based on LLVM), software compartmentalization model, and open-source applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.