Abstract
This work presents a short and very efficient method to produce high performance textured Ca3Co4O9 thermoelectric materials through initial powders modification. Microstructure has shown good grain orientation, and low porosity while slightly lower grain sizes were obtained in samples prepared from attrition milled powders. All samples show the high density of around 96% of the theoretical value. These similar characteristics are reflected in, approximately, the same electrical resistivity and Seebeck coefficient values for both types of samples. However, in spite of similar power factor (PF) at low temperatures, it is slightly higher at high temperature for the attrition milled samples. On the other hand, the processing time reduction (from 38 to 2 h) when using attrition milled precursors, leads to lower mechanical properties in these samples. All these data clearly point out to the similar characteristics of both kinds of samples, with a drastic processing time decrease when using attrition milled precursors, which is of the main economic importance when considering their industrial production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.