Abstract

Nanomaterial for lithium batteries can decrease mechanical strain upon lithium intercalation/ deintercalation from lattice, and lead to high rate capability. The currently available microwave technology permits the development and implantation of a temperature-controlled microwave-assisted hydrothermal synthesis (TCMH) of nano-sized cathode material for lithium batteries. Unlike in previous reported traditional hydrothermal synthesis of cathode material LiFePO4, the pure phase of LiFePO4 can be simply and rapidly synthesized for 5 minutes in water under hydrothermal treatment with microwave irradiation. The homogeneous effects induced by microwave irradiation could create a uniform seeding condition. The colloid precursor Li3PO4 plays the key role to be the nucleation center for the new phase while the formation energy for LiFePO4 would be decreased during the following microwave irradiation. The as-prepared pristine LiFePO4 without carbon coating are characterized by X-ray diffraction, Raman, scanning and transmission electron microscopy, and tested as the cathode in lithium batteries. The particle sizes of pristine LiFePO4 are dependent on hydrothermal and microwave-assisted hydrothermal condition and the electrochemical performance are relatively determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.